Кристаллическая решетка алмаза и его свойства

Кристаллическая решетка алмаза

Элементарная ячейка структуры алмаза имеет форму куба. Если говорить более научным языком, то алмаз кристаллизуется в кубической системе (так называемой «сингонии»).

В каждой вершине этого куба расположено по атому. По одному атому находится в центре каждой грани, четыре — внутри куба. Каждый из атомов, расположенных в центрах граней, является общим для двух ячеек, а каждый из атомов, находящихся в вершинах куба,— общим для восьми ячеек. Кубическая система — самая плотная упаковка атомов.

Попробуем выразить ту же мысль еще одним способом. Каждый атом углерода в структуре алмаза расположен в центре тетраэдра, вершинами которого служат четыре ближайших атома. Каждый из атомов связан со своими четырьмя ближайшими соседями, симметрично расположенными по его вершинам (тетраэдра), наиболее «прочной» химической связью — ковалентной.

Различают несколько типов химической связи: ионная, ковалентная, металлическая, водородная.

Идеальный кристалл алмаза можно представить себе как одну гигантскую молекулу.

В результате получается очень плотное расположение атомов, прочные связи между которыми в структуре алмаза обусловливают его исключительную твердость  и другие характерные свойства.

Физические и химические свойства

Алмаз не является на 100% чистым углеродом, как и в других относительно чистых минералах присутствуют различные примеси. Главной примесью, оказывающей влияние на свойства камня, является азот. Кристаллы, которые непрозрачны к УФ излучению, относят к 1 типу, а все остальные – 2 тип. В 1 типе камней азотная составляющая достигает 0,25%, тогда как во втором азот не превышал 0,001%. На этом примере мы видим корреляцию различных свойств камня, что позволяет делать предварительные выводы внутреннем составе без детального изучения о принадлежности к типам.

Алмаз не вступает в реакцию с растворами кислот и щелочей и только при температуре 800 ºС довольно легко реагирует с расплавленными щелочами, солями кислородных кислот и некоторыми металлами.

Сгорает на воздухе при температуре 850-1200 ºС, выделяя углекислый газ. Окисление происходит при 600 ºС, а при нагревании до 1600 ºС в вакууме частично превращается в графит.

Алмаз – самый твердый минерал на Земле. По шкале Мооса – 10. При этом очень хрупкий. Твердость на различных гранях кристалла не одинакова, самая прочная – октаэдрическая грань. Плотность 3515 кг/м3 у прозрачных образцов, у непрозрачных немного ниже. Отталкивает воду, но прилипает к жирам. На свойствах основан метод отбора камней из руды, иногда применяемых в комплексе.

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минералабесцветный, желтовато-коричневый переходящий в жёлтый, коричневый, чёрный, синий, зелёный или красный, розовый, коньячно-коричневый, голубой, сиреневый (очень редко)
Цвет чертыникакой
Прозрачностьпрозрачный, полупрозрачный, непрозрачный
Блескалмазный, жирный
Спайностьсовершенная по октаэдру
Твердость (шкала Мооса)10
Изломнеровный
Прочностьхрупкий
Плотность (измеренная)3.5 — 3.53 g/cm3
Радиоактивность (GRapi)
Термические свойстваВысокая теплопроводность. На ощупь холодный, поэтому алмаз называют на сленге «лед»

Физические свойства алмаза:

Наименование показателя:Значение:
Длина связи С–С, нм0,15
Плотность, г/см2от 3,47 до 3,55
Температура плавления (при давлении 11 ГПа), оС3700-4000 °C
Теплопроводность, Вт/(м·К)от 900 до 2300
Показатель преломленияот 2,417 до 2,419 (в желтом цвете),

в других цветах – от 2,402 (красный цвет) до 2,465 (фиолетовый цвет).

Дисперсия0,0574
Твердость (шкала Мооса)10
Твердость, ГПаот 70 до 150

МОРФОЛОГИЯ

Морфология алмаза очень разнообразна. Он встречается как в виде монокристаллов, так и в виде поликристаллических срастаний («борт», «баллас», «карбонадо»). Алмазы из кимберлитовых месторождений имеют только одну распространенную плоскогранную форму — октаэдр. При этом во всех месторождениях распространены алмазы с характерными кривогранными формами — ромбододекаэдроиды (кристаллы похожие на ромбододекаэдр, но с округлыми гранями), и кубоиды (кристаллы с криволинейной формой ). Как показали экспериментальные исследования и изучение природных образцов в большинстве случаев кристаллы в форме додекаэдроида возникают в результате растворения алмазов кимберлитовым расплавом. Кубоиды образуются в результате специфического волокнистого роста алмазов по нормальному механизму роста.

Алмаз Куллинан разбитый на 9 частей

Синтетические кристаллы, выращенные при высоких давлениях и температурах, часто имеют грани куба и это является одни их характерных отличий от природных кристаллов. При выращивании в метастабильных условиях алмаз легко кристаллизуется в виде пленок и шестоватых агрегатов.Размеры кристаллов варьируют от микроскопических до очень крупных, масса самого крупного алмаза «Куллинан», найденного в 1905г. в Южной Африке 3106 карат (0,621кг).На изучение огромного алмаза было потрачено несколько месяцев и в 1908 году он был расколот на 9 крупных частей.Алмазы массой более 15 карат — редкость, а массой от сотни карат — уникальны и считаются раритетами. Такие камни очень редки и часто получают собственные имена, мировую известность и своё особое место в истории.

Разновидности углеродных соединений

Известны еще две разновидности кристаллического вещества, состоящие из атомного углерода, это лонсдейлит и графит. Кристалл минерала алмаза значительно тверже своих собратьев. Лонсдейлит встречается лишь в останках метеоритов, а графит можно увидеть на каждом шагу. Парадокс, но мягкость графита, который легко слоится, и абсолютная твердость алмаза, объясняется лишь разным строением кристаллической решетки. Тип атомов у этих веществ абсолютно одинаков. Все дело в том, что кристаллическая решетка алмаза и графита и различны.

У графита решетка имеет гексагональный характер, частицы углерода расположены слоями, дистанция между которыми превышает расстояние между атомами в одном слое. Этим объясняется и электропроводность графита, и его высокий показатель поглощения света. Алмаз обладает кубической оксагональной решеткой, которая отвечает за его высокую прозрачность и низкий уровень электропроводности. Расстояние между атомами кристаллической решетки везде имеет одинаковое значение, поэтому прочность этого минерала особенно высока. В связи с этим кристалл алмаза является хорошим диэлектриком, практически не пропускающим электрический ток.

Лечебные свойства камня

По мнению лиготерапевтов, минерал способствует активному обновлению клеток организма. Во многих учениях его применяется как омолаживающее средство.

При помощи минерала лечат:

  • нервные болезни;
  • патологии почек;
  • болезни сердца.

В прежние времена горные воины носили перстни, декорированные бриллиантом. Считалось, что такие украшения придают силу духа, делают человека мужественным и непобедимым. Драгоценный камень оберегает от скверных поступков. Такой талисман приносит искреннее счастье владельцу.

Свойства

Плотность алмаза составляет 3511 кг на куб. м. Этот минерал — эталон твердости по шкале Мооса, значение его твердости составляет 10 баллов. Гранит, например, имеет плотность 8-9, мрамор — еще меньше. Парадокс алмаза заключается и в том, что при абсолютных значениях твердости, прочность алмаза невелика, он превращается в пыль от резкого удара обычного молотка.

Спайность. Плотность алмаза неравномерна, камень раскалывается по системе плоскостей, параллельных граням кристалла. Такая способность в минералогии называется спайностью. Правильно выбранный тип плоскости спайности важен при ювелирной обработке, которой подвергается кристалл алмаза — точно выбранные угла раскола отделяют ненужные примеси, дефекты и вкрапления воды и твердых веществ, понижающие стоимость драгоценного камня.

Прозрачность. Структура алмаза позволяет предположить, что это камень должен быть абсолютно прозрачным для видимого света. Парадокс, но алмаз чистой воды не существует, реальные алмазы содержат от 2 до 5% примесей, которые искажают строение кристаллической решетки, делая ее неидеальной.

В последнее время открыта особенность алмаза изменять свой цвет под действием рентгеновского излучения. Облучение заставляет кристалл алмаза излучать свет в синей и зеленой части спектра. Кристаллическая решетка минерала под действием радиоактивности становится рыхлой, ковалентные связи между атомами нарушаются. Алмаз теряет свои показатели прочности и прозрачности.

Парадокс алмаза распространяется так же на его химические показатели. Этот минерал необычайно стоек к воздействию различных кислот, вне зависимости от их температуры. В атмосфере этот кристалл алмаза сгорает при температурах около 1000°С. При более высоких температурах, порядка 1400°С, в вакуумной среде структура алмаза разрушается, начинается процесс превращения алмаза в графит. Точный расчет давления и температуры позволяет избежать образования графита и из углеродной заготовки ученые получают искусственный алмаз.

Аллотропные модификации камня

Если химический состав алмаза — углерод в чистом виде, то стоит выяснить, что это за элемент, а также разобраться в его модификациях и физических формах. Согласно мнению ученых, это вещество изначально входило в газовое облако, из которого постепенно образовывались планеты. Так или иначе, в составе каждой из планет Солнечной системы присутствует углерод в каком-то агрегатном состоянии.

Если говорить о земной коре, то она на 0,14% состоит из этого неметаллического элемента. А также по одной из теорий происхождения человека считается, что углерод — один из четырех макроэлементов, являющихся «стройматериалом» тела. Наиболее известные модификации одного углерода называют так:

  • алмаз — наиболее дорогая форма;
  • графит — известное вещество, которое используется в промышленности;
  • карбин;
  • лонсдейлит — содержится в метеоритах;
  • фуллерены — наиболее молодые формы, которые были открыты;
  • углеродные нанотрубки — применяются в каркасах к наноизделиям;
  • графен;
  • уголь — вещество, которое используется в качестве промышленного сырья для получения тепла;
  • сажа.

Казалось бы, что общего может быть у кристально чистого алмаза с графитом или углем? А вот состав этих веществ говорит об обратном и наглядно демонстрирует важность расположения атомов в кристаллической решетке. Притом, что кроме углерода, в веществах ничего нет.

Вполне реально, что кроме этих элементов, существуют другие не открытые формы. А их исследование во многом зависит от алмазов, поскольку во время работы с этим драгоценным камнем ученые пытаются расшифровать его структуру, чтоб производить искусственно, и, вместе с тем, находят новые модификации элемента.

Исходя из структуры алмаза, можно сделать вывод, что камень абсолютно прозрачен и пропускает весь видимый спектр через себя. Но ничего идеального в природе не существует. Поэтому даже у такого кристалла могут быть примеси в решетке. Если рассматривать наиболее чистые экземпляры камня, то там содержится до 1018 атомов на 1 кубический сантиметр. И это нормальное явление, поскольку количество примесей зависит от процессов, в которых рос камень. И не факт, что посторонние вещества будут видны невооруженным глазом.

Среди примесей встречаются такие элементы, как:

  • азот;
  • кремний;
  • кальций;
  • магний;
  • бор;
  • алюминий.

Конечно, если их много, то от этого страдает чистота камня и, соответственно, падает стоимость. Или же такие алмазы направляют для использования в промышленность. При этом в алмазах встречаются не только твердые, но и жидкие и даже газообразные формы включений. Они могут располагаться неравномерно, а также скапливаться в центре либо на периферии камня. Все они влияют на свойства камня, на его оттенок и способность преломлять свет. Например, азот влияет на люминисцентность алмаза.

Алмазы

Алмазы

По спектрам поглощения в ИК- и УФ-диапазонах выделяют три типа алмазов:

  • Первый тип. В них азот содержится либо в виде пар атомов и плоских встроек, либо в виде одиночных атомов, которые равномерно распределены по объему камня.
  • Второй тип. В них азот, как правило, отсутствует. В подтипе IIа нет примесей, а в подтипе IIб присутствуют атомы бора.
  • Третий тип может включать в себя примеси кремния.

Способы применения вещества

Всевозможные пути использования алмаза обусловлены его прочностью и способностью преломлять свет. Его способностью хорошо поддаваться огранке уже давно используется в изготовлении красивейших ювелирных изделий. Основные отрасли производства, в которых используются эти кристаллы:

  • Квантовые компьютеры. Используются при построении вычислительных единиц, кубитов, которые одновременно являются и оперативной памятью, и процессором таких устройств. Для использования в качестве кубита алмаз должен быть «дефектным» — содержать в своей толще атом другого вещества. Тогда хранить информацию на таком кристалле можно с использованием электронов чужеродного вещества. С помощью их спинов можно не только записывать, но и обрабатывать блоки данных. В качестве таких атомов используются, как правило, азот или кремний.
  • Ядерная энергетика — отработанные в качестве замедлителей и облучённые радиоактивными изотопами графитовые стержни устаревших реакторов можно использовать в качестве вторичного топлива для более новых. Для этого стержни нагреваются, часть радиоактивных изотопов углерода высвобождается в газообразной форме и улавливается специальными датчиками. После этого такой газ прессуется в искусственные алмазы. Имея в радиоактивном состоянии некоторое значение электропроводимости, такие кристаллы впитывают ими же выпущенные гамма-лучи, являясь довольно эффективной формой топлива.
  • Промышленность — кристаллы алмазов используются для изготовления режущих инструментов, причём как при заточке новых средств обработки, так и при модернизации старых путём напыления на их кромку тонкой плёнки из алмазной пыли.

 

Самым распространённым является, конечно, применение огранённых алмазов — бриллиантов — в ювелирном деле. В зависимости от того, какой тип кристаллической решётки у алмаза, а так же от его размера и естественной формы получаются разные вариации огранки этого вещества. Тип изделия тоже накладывает свои ограничения на форму камня — например, круглая огранка применяется в кулонах, перстнях или ожерельях, тогда как фантазийная может использоваться для украшения подвесок или сережек.

Свойства алмазов

Благодаря своему составу и строению, алмаз получил такие свойства, как:

  • Стойкость к воздействию химических веществ, кислот, щелочей.
  • Наивысшая твердость вещества (абсолютный показатель, который равняется 10 по шкале Мооса), но при этом хрупкость камня.
  • При нагреве без доступа кислорода взрывается и превращается в графит, а дальнейшее плавление алмаза аномально. С кислородом температура плавления находится на уровне 4 тысяч градусов по Цельсию.
  • 20-24 Вт/см — это показатель теплопроводности. Настоящий алмаз не нагреется, даже если его долго держать в руке.
  • Алмаз отлично подходит в роли изолятора.
  • Камень обладает уникальным свойством преломлять лучи и при этом светиться.

Если говорить об отличиях алмаза и графита, самого доступного для нас вещества, то стоит сказать, что свойства разнятся из-за строения кристаллической решетки. О строении алмаза уже известно, а вот у графита ситуация обстоит по-другому.

алмаз кристаллическая решетка